ADVANCED LEVEL PHYSICS TEACHING SCHEMES LOWER SIXTH SCIENCE

FIRST TERM

WEEK	TOPIC	LESSON	CONTENTS	OBJECTIVES	REMARKS/ ACTIVITIES
			FIRST SEQUENCE		
1	1.0 PHYSICAL	 1.1 Physical quantities 1.2 Base quantities and base units 1.3 Derived quantities and derived (SI) units Homogeneity of physical equations 	 the magnitude of a physical quantity base quantities and their units derived quantities and their units homogeneity of an equation physical correctness of an 	 a) Explain what is meant by a physical quantity b) Represent a physical quantity c) Name base quantities and their units d) Obtain base units from derived or SI units e) Distinguish between homogeneity and physical correctness of an equation f) Prove homogeneity of physical equations 	
	QUANTITIES		equation		
	AND		 scalar quantities vector quantities vector nature of physical 	a) Distinguish between scalar and vector quantitiesb) Calculate magnitude of vectors	
2	EXPERIMENTAL	1.4 Scalar and vector quantities	quantities - representing vector quantities - combining vectors: co-linear, coplanar and concurrent	 c) Add or subtract vectors d) Resolve vectors into perpendicular components e) Explain the usefulness of the vertical 	
	PHYSICS		- resolving vectors	component	
1		1.5 Experimental physics	 use of standard measuring instruments null deflection methods 	a) Measure physical quantities using standard measuring instruments.b) Use a galvanometer in null methods	
2		1.6 Accuracy and Sensitivity	- the use of standards to calibrate measuring instruments.	 a) Distinguish between precision and accuracy b) Determine the accuracies of measuring instruments c) calibrate measuring instruments 	
3		1.7 instruments	- Use of the Cathode Ray Oscilloscope	a) Use CRO to measure p.d., current and time of an a.c.b) Use of CRO as a voltmeter, ammeter and clock	

3		2.1 Rectilinear Motion	 displacement / distance velocity / speed: average, instantaneous, uniform and 	(i) Define each quantity, stating its SI units(ii) Derive the equations of motion
		2.11 Definitions of	terminal	(iii) Determine velocity/ acceleration using
		related terminology	- acceleration / deceleration	suitable apparatus
			- equations of uniformly	
		2.12 Equations of	accelerated linear motion	(iv) Sketch and interpret motion graphs
		uniformly accelerated	- displacement / time graphs	(v) use the equations of motion to solve
		linear motion	- velocity / time graphs	related problems
			- measurement of velocity and	
	2.0	2.13 Motion Graphs	acceleration by appropriate	(vi) Apply rectilinear motion in sports
			means	
			- motion under gravity	
		2.14 Motion under	- time and speed symmetry in	(vii) Measure the acceleration of free fall
		gravity	vertical motion under gravity	(viii) Determine the range and maximum
	MECHANICS		- Measurement of acceleration	height reached in projectile motion
		8.1 Projectile Motion	due to gravity, g	(ix) Calculate time of flight
			- projectile motion	
			- motion with non-uniform	
			acceleration	(i) Define angular speed, angular velocity
				and centripetal acceleration, and the unit
				vectors \mathbf{r} and $\boldsymbol{\theta}$
4			- angular speed	(ii) Derive the equations: $\mathbf{v} = \mathbf{r}\omega \mathbf{r}$ and
		2.2 Circular motion		$\mathbf{a} = \mathbf{r}\omega^2 \mathbf{r}$
			- angular velocity	(iii) Express angular displacements in
				radians
			- centripetal acceleration	(iv) Use the concepts of angular velocity to
				solve problems
			- centripetal force	(v) Use the equations in (ii) above to solve
				problems
			- motion in a vertical circle	(vi) Describe qualitatively, motion in a
				curved path due to a perpendicular force
				(vii) Recall and apply centripetal force as $\mathbf{F} = \mathbf{mr}\omega^2 \mathbf{r}$
5		2.3 Forces	- definition of force	(i) Name and explain the nature of the different types of foreas
5		2.5 Forces		different types of forces (ii) Calculate weight using $W = m g$
			- types of forces	(ii) Calculate weight using $\mathbf{W} = \mathbf{m} \mathbf{g}$

5		2.4 Turning Effects of Forces	 effects / applications of friction calculation of weight moments couples torques static and dynamic equilibrium coplanar forces conditions for equilibrium 	 (iii) State the importance of friction in everyday activities (i) Define the moment of a force, a couple (ii) Calculate moments and torques (iii) State and apply the principle of moments (iv) State and use the conditions of static and dynamic equilibrium of a body (v) Explain the use of couples and torques in everyday life 			
6	2.0 MECHANICS	2.5 Newton's Laws of Motion and Momentum	 Newton's first law and inertia Newton's second law and momentum Newton's third law and reaction pairs momentum conservation of linear momentum elastic and inelastic collisions 	 (i) State Newton's laws of motion (ii) State the application of each law in everyday life (iii) Define momentum and state its units (iv) Use the expression F = m a as a special case of Newton's second law (v) Do appropriate calculations using F= ma (vi) Define the newton (vii) State and apply the principle of conservation of linear momentum (viii) Distinguish between elastic and inelastic collisions 			
	END OF FIRST	END OF FIRST					
	SEQUENCE	SEQUENCE	END OF FIRST SEQUENCE	END OF FIRST SEQUENCE			
	EVALUATION	EVALUATION	EVALUATION	EVALUATION			
	SECOND SEQUENCE BEGINS						

				(i) Define work, power and energy, stating
			- work	their units.
		2.6		(ii) State that whenever work is done on a
7.			- power	body it gains energy.
		Work,	F • • • • • •	(iii) Calculate the different forms of
	2.0	,	- kinetic energy	mechanical energy from: $E_P = \frac{1}{2} k x^2$
				P.E. = m g h K.E. = $\frac{1}{2}$ m v ²
		Energy	- potential energy	(iv) State and apply the law of conservation
				of energy
			- gravitational potential energy	(v) Use the work – energy equation in
		And		solving problems
	MECHANICS		- elastic potential energy	(vi) Apply the Einstein's mass – energy
				equation: $E = m c^2$
		Power	- law of conservation of energy	(vii) State the different applications of
				energy in the home
			- conservative forces	(viii) Explain the relationship between
	2.0			power, work and energy
	3.0	3.1	- Periodic Motion	(i) State the characteristics of a periodic
	SIMPLE	3.1		motion, giving everyday examples e.g. heart
			- definition of SHM	beat, change of tides and rotation of the earth
	HARMONIC			(ii) Explain what is meant by an oscillation
		Simple	- the equation of SHM: $\mathbf{a} = -\omega^2 \mathbf{r}$	(iii) Define Simple Harmonic Motion
	MOTION		1	(iv) Define amplitude, period, frequency and
			- definition of terms associated	pulsatance
		Harmonic Motion	with SHM	(v) Express the period in terms of frequency
	AND WAVES			or pulsatance
			- Simple Harmonic Equations and	(vi) Recall and use the defining equation of
			Graphs; $x = x_0 \sin \omega t$,	SHM: $\mathbf{a} = -\omega^2 \mathbf{r}$
			$v = v_0 \cos \omega t = x_0 \omega \cos \omega t$	(vii) Draw graphs to illustrate the variation
			$a = -x_o \omega^2 \sin \omega t$	of displacement, velocity and acceleration of
				a SHO with time.
		21	- Simple Harmonic Oscillators :	(viii) Cive exemples of SUO
		3.1	a) the simple pendulum	(viii) Give examples of SHO(ix) Analyze the motion of SHO
8		Simple	b) mass-spring system - Energy of a Simple Harmonic	(x) Describe the interchange of energy
0		Harmonic Motion	Oscillator:	between K.E. and P.E. for a SHO.
			$F_{\rm m} = \frac{1}{2} \text{ m } \omega^2 a_0^2 \cos^2 \omega t$	
	3.0		$\begin{split} E_p &= \frac{1}{2} m \omega^2 a_o^2 \cos^2 \omega t \\ E_k &= \frac{1}{2} m \omega^2 a_o^2 \sin^2 \omega t \end{split}$	
			x ,	

			$E_{\rm T} = \frac{1}{2} m \omega^2 a_0^2$	
	SIMPLE HARMONIC MOTION AND WAVES 3.0	Mechanical Resonance	 Qualitative and experimental treatment of free, damped and forced oscillations. Mechanical resonance Everyday occurrences and effects of mechanical resonance 	 (i) Give practical examples of free oscillations (ii) Describe practical examples of damped oscillations with particular emphasis on the degree of damping (iii) Give practical examples of forced oscillations (iv) Sketch graphs to show how the amplitude of oscillation varies with frequency. (v) Define resonance (vi) Give the importance of mechanical resonance
9	SIMPLE			
	HARMONIC	3.2	 mechanical waves on water, along strings and in air progressive waves 	(i) Distinguish, giving examples, between:a) mechanical and e.m. waves,b) longitudinal and transverse waves
	MOTION	Mechanical	- graphical interpretation of amplitude, speed, wavelength,	c) progressive and stationary waves (ii) Draw displacement – time and
	AND WAVES	Waves	 amplitude, speed, wavelength, period and phase longitudinal waves and transverse waves wave fronts reflection and refraction of waves Factors affecting the speed of transverse waves on taut strings 	 (ii) Draw displacement – time and displacement – distance graphs (iii) Interpret such graphs (iv) Define amplitude, period, frequency, wavelength (v) Define and describe wave fronts (vi) Draw diagrams to explain reflection and refraction of waves using wave fronts. (vii) Describe the factors that affect the speed of transverse waves
10		10.1 The Doppler Effect In Sound	 meaning of Doppler effect moving source moving observer 	(i) Describe the term 'Doppler effect'(ii) Derive the associated equations(iii) Use these equations to solve exercises
		10.2	meaning of superpositionthe Principle of Superpositionillustration of superposition	(i) Explain the principle of superposition(ii) Apply this principle to simple exercises(iii) Demonstrate superposition using:

	10.0 WAVE PHENOMENA	The Superposition Of Mechanical Waves	using two sets of spherical sound waves and waves on taut strings - phase difference and path difference - measurement of speed of sound in free air	microwaves, stretched strings and air columns in closed or opened pipes. (iv) Explain the formation of stationary waves using graphs, and identify nodes and antinodes.		
11	10.0 WAVE PHENOMENA	10.3 Electromagnetic Waves	 the EM spectrum, method of production, chief properties and uses of the main divisions characteristics of EM waves meaning and application of plain polarization 	 (i) Outline the EM spectrum in terms of increasing wavelength or frequency (ii) State the characteristics of EM waves (iii) List the sources, properties, uses and detectors of each portion of EM spectrum (iv) Explain what is meant by polarization (v) Describe the different means by which polarization is achieved (vi) Explain the different applications of polarization. 		
12	END OF SECOND SEQUENCE HARMONIZED EVALUATIONS TEST ACQUISITION OF KNOWLEDGE AND ADJUST TEACHING METHODS / TECHNIQUES					
		1	THIRD SEQUENCE I			
		10.4	- Meaning of diffraction - Fraunhofer diffraction at a	(i) Explain the meaning of diffraction(ii) Describe experiments that demonstrate diffraction through narrow and wide gaps.		
	10.0	Superposition of	single slit	(iii) Describe Fraunhofer diffraction pattern at a single slit and circular aperture		
13	WAVE	Electromagnetic	- Fraunhofer diffraction at a circular aperture	(iv) Derive the diffraction equation: $n\lambda = d \sin \theta$ (v) Explain the effect of diffraction grating		
	PHENOMENA	Waves	- Optical transmission grating with normal incidence	on white light (spectrum production) (vi) Explain the term' interference' (vii) State the conditions for interference of		
			- multiple slit diffraction	(vii) State the conditions for interference of water waves using two slits. (viii) Describe experiments that illustrate		
			- meaning of interference	double – slit interference in water, light and microwaves		
			- two- source interference pattern	(ix) Solve problems using the equation $\lambda = \frac{ax}{D}$		

		10.4	- Young's Double Slit experiment	(x) Explain coherence state the conditions
		10.4		for its occurrence
		Company a station of	- measurement of wavelength by	(xi) Determine wavelength by method of
		Superposition of	Young's double slit experiment	Young's double slit experiment.
		Electromagnetic		(xii) State the approximate dimensions of slit
		Waves		size, slit separation and screen distance.
			- light sources: LASERS	(i) Explain the meaning of LASERS
		10.4	and gas discharge lamps	(ii) Describe the method of production of
	10.0	Superposition of		light by gas discharge lamps and by LASER
		Electromagnetic		(iii) Give the advantages of LASERS over
	WAVE	-		the gas discharge tube.
		Waves		
	PHENOMENA	10.5	- reflection and refraction at plain	(i) Define reflection and refraction
		10.5	surfaces	(ii) State the laws of reflection
			- laws of refraction	(iii) State the laws of refraction
14		Geometrical	- refractive index	(iv) Prove the laws of reflection, refraction
		Optics	- total internal reflection	and the phenomenon of total internal
				reflection using Huygens' wave front
				construction
			- prisms	(i) Trace the path of a light ray through a
			- dispersion	prism (ii) Explain what is meant by dispersion
15		10.5	- dispersion	(iii) Describe the production of a pure and an
15		10.5	-lenses	impure spectrum
		Comstrias	Tendes	(iv) State characteristics of images formed
		Geometrical	- dioptre	by a concave lens and by a convex lens
		Optics		(v) Use the lens formula to solve problems
			- Optical instruments:	(vi) Describe the application of lenses in the
			the microscope	microscope, telescope and the les camera
			the astronomical telescope	(vii) Calculate the magnifying power of
				optical instruments
				(viii) Explain the defects of lenses e.g. coma,
				spherical and chromatic aberrations
			TERM / END OF THIRD SEQUE	
	SECO	ND TERM BEGINS /	THIRD SEQUENCE PART TWO	CONTINUES
1-				
16				(i) State that heat is energy in the process of
	4.0		Transmission 1.41	transfer from hot to cold regions.
	4.0		- Temperature and thermometers	(ii) Define temperature.

		4.1		(iii) Explain what is meant by <i>thermometric</i>
			- Temperature scales	substance and thermometric property,
	ENERGETICS			giving examples of each.
			- Mercury–in–glass thermometer	(iv) Name the different types of
				thermometers, stating their thermometric
		Temperature	- Thermocouple thermometer	substances and properties.
				(v) Compare the relative advantages and
	(THERMAL		- The Zeroth Law of	disadvantages of resistance and
			thermodynamics	thermocouple thermometers
	ENERGY)			(vi) Discuss the different temperature scales
				relating to their being used for the
				calibration of a thermometer.
				(vii) State that the absolute scale of
				temperature does not depend on any
				particular property of a substance
				(viii) Convert temperatures measured in
				Kelvin to degree Celsius:
				$\theta / \circ C = T / K - 273.15$
				(ix) Explain the term thermal equilibrium.
				(x) State the zeroth law of thermodynamics.
		4.2	- Forms of energy	(i) Name and explain the different forms of
		7.2	- Concepts of energy transfer and	energy
			energy conversion	(ii) Apply the principle of conservation of
		Energy Transfer	- Conservation of energy	energy to the forms of energy.
			conservation of energy	energy to the forms of energy.
		4.2		(iii) State and explain the concept of internal
			- Internal energy	energy
17		Enongy Transfor		(iv) State that internal energy is the sum of
		Energy Transfer	- The First Law of	the random distribution of K.E. and P.E
			Thermodynamics	of the molecules of the system.
				(v) Relate a rise in temperature of a body to
				an increase in its internal energy
				(vi) Use the concept of efficiency to solve
				problems involving energy losses in
				practical devices.
				(vii) State the First law of thermodynamics
				and use it in the form $\Delta Q = \Delta U + \Delta W$ to
	I			

	4.3 Heating Matter	- Measurement of Specific Heat Capacity of : a solid a liquid	 solve problems (i) Define Heat Capacity and Specific Heat Capacity (ii) Describe exp'ts to measure SHC of solids and liquids
18	4.3 Heating Matter	 Meaning of latent heat and specific latent heat Measurement of: SLHF of ice SLHV of water 	 (iii) Define SLHF and SLHV (iv) Explain using the kinetic theory, why a) melting and vaporization take place at constant temperature b) the SLHV is higher than SLHF c) a cooling effect accompanies evaporation
	END OF THIRD SEQUENCE EVALUATION	END OF THIRD SEQUENCE EVALUATION	END OF THIRD SEQUENCE EVALUATION
		FOURTH SEQUENC	E BEGINS
			(i) Explain what is meant by conduction, convection and radiation
19	4.4	- conduction	(ii) Describe exp'ts to demonstrate the properties of good and bad conductors of
	Thermal energy transfer	- convection - radiation	heat, giving examples.(iii) Give a molecular account of the transfer of heat in solids
			(iv) Relate convection in fluids to density
		- thermal conductivity	changes (v) Describe exp'ts to illustrate convection
		- good and poor conductors	(vi) Identify Infra-Red radiation as part of the electromagnetic spectrum.
		- Newton's law of cooling	 (vii) Describe exp'ts to show the properties of good and bad emitters, and absorbers (viii) State everyday applications / consequences of conduction, convection and radiation
20		- Gases - Brownian motion in gases	(i) State the basic assumptions of the kinetic

	9.0 THERMAL PHYSICS – THERMO DYNAMICS	9.1 The Gas Laws	 The Gas Laws The Kinetic Theory of Gases Assumptions of the kinetic theory of gases Differences between Real gases and Ideal gases Pressure exerted by gas molecules on the walls of the container Absolute zero of temperature and the Kelvin temperature scale 	 theory of gases (ii) Use the kinetic theory to explain the pressure exerted by gases (iii) Solve problems using the equation of state for an ideal gas PV = nRT (iv) Derive the relations P = 1/3 ρ c² and K.E. = 3/2 kT (v) Establish the relationship between pressure and absolute temperature. 	
			 distribution of molecular speeds P- V diagrams 		
21		9.3	- Statement of the law - Degrees of disorder in a system	(i) State the second law of thermodynamics (ii) Explain what is meant by entropy	
21		The Second Law Of	 Reversible and irreversible processes Entropy change 	(ii) Explain what is mean by endopy(iii) State that entropy is a more natural state than order.(iv) Name and explain some reversible and irreversible processes	
	4.0	Thermodynamics		(i) Describe the simple kinetic model for solids, liquids and gases.	
	ENERGETICS	4.5	 The kinetic theory of matter Solids: density forces/separation potential energy/ separation 	 (ii) Distinguish between the states of matter in terms of spacing ordering and motion of molecules (iii) Distinguish between the structure of crystalline, polymeric and amorphous solids. 	
		Solids and Liquids	 Stresses and Strains Elasticity and hysteresis Hooke's Law and elastic limit 	 (iv) Explain tensile stress and compressive stress (v) Describe the behavior of springs in terms of load, extension, elastic limit, Hooke's law and spring constant (vi) Sketch force-extension graphs for ductile, brittle and polymeric materials. 	

22	7.0 ELECTRICAL ENERGY	 4.5 Solids and Liquids 7.1 Current Electricity 	 Young's Modulus of elasticity Surface tension Pressure difference in fluids: P = hpg, manometers, hydrostatic force Electric current Potential Difference Electromotive Force Current – Potential difference relationships Ohm's Law 	 (i) Define and use the terms stress, strain and Young's Modulus (ii) Describe an experiment to determine Young's modulus in the form of a wire. (iii) Distinguish between elastic and plastic deformation of a material (iv) Deduce the strain energy in a deformed material from the area under the force – extension graph (v) Derive and use the equation P = hpg (vi) Define surface tension (vii) Determine the pressure difference across a spherical interface. (viii) Describe exp'ts to measure surface tension (i) Express electric current as the rate of flow of charged particles (ii) Define e.m.f. in terms of energy (iii) Distinguish between e.m.f. and p.d. in terms of energy considerations (iv) Sketch and explain the I – V characteristics of conductors, semi- conductor diodes and filament lamp (v) State Ohm's law and use the relationship V = IR 	
23	7.0 ELECTRICAL	7.1 Current	 Resistance, resistivity, conductivity and superconductivity Internal resistance of a cell Resistor networks Temperature dependence of 	 (i) Explain the meanings of resistance, resistivity, conductivity and they are related (ii) Explain the meaning of internal resistance (iii) Describe the effects of internal 	
	ENERGY	Electricity	 reinperature dependence of resistance Electrical energy and power Potential dividers Combining Cells 	 (iii) Describe the effects of internal resistance on the terminal P.D. and output power (iv) Calculate the net resistance of a number of resistors in series and in parallel (v) Sketch the temperature characteristics of 	

			- Kirchhoff's laws and circuit calculations	a thermistor. (vi) Solve problems using V = WQ,	
			- The Wheatstone bridge and Meter Bridge	$P = IV = I^{2}R$ (vii) Explain the use of the potential divider	
			- The potentiometer and its	circuit as a source of variable p.d.	
			applications	(viii) Explain the use of thermistors and light dependent resistors in potential dividers to provide a p.d. that is dependent on	
				temperature and illumination respectively	
				(ix) State Kirchhoff's first law and relate it to the conservation of charge	
				(x) State Kirchhoff's second law and relate it to the conservation of energy	
				(xi) Apply Kirchhoff's laws in solving circuit problems	
				(xii) Draw the Wheatstone bridge and use	
				the principle of balance to determine an unknown resistance	
				(xiii) Use the potentiometer to measure the	
				resistance of a given length of wire.	
24		END OF FOURT	H SEQUENCE HARMONIZED I	EXAMINATIONS	
			FIFTH SEQUENCE BEGINS		
	5.0		- Conduction mechanisms in solids	(i) Distinguish between conductors and insulators	
25	5.0	5.1	- Current and charge flow	(ii) Derive the relation $I = n A v e$	
	ATOMIC	Electron Flow in	- Temperature coefficient of resistance	(iii) Define temperature coefficient of resistance	
		Metals	- Experiment to measure the	(iv) Sketch graphs to show how the	
	AND		temperature coefficient of a metal wire	resistances of conductors, semi- conductors and insulators vary with temperature	
	NUCLEAR			(v) Calculate temperature coefficient of resistance from graphs.	
				(vi) Describe exp't to determine the temperature coefficient of resistance of a	
	PHYSICS			wire	

		5.2 + 5.3 Conduction Mechanisms in Semi- Conductors	- The Band Theory - Properties of Intrinsic and Extrinsic Semi - conductors	 (i) Explain the increased conductivity of semi conductors in terms of more charge carriers; electrons and holes (ii) Describe the conductivity of extrinsic semi conductors in terms of minority and majority charge carriers (iii) Use the band theory to differentiate between insulators, conductors and semi conductors 	
26		5.2 + 5.3		 (i) Explain doping in extrinsic semi conductors (ii) Distinguish between p- and n- type 	
	5.0	Conduction		extrinsic semi conductors	
	АТОМІС	Mechanisms in	- The n- type and p- type semi conductors	 (iii) State the difference between intrinsic and extrinsic semi conductors (iv) Explain the formation of the p- n 	
	AND	Semi- Conductors	- The p – n junction - The p-n junction and the LED	 (v) Explain the formation of the p in junction and the meaning of <i>barrier p.d.</i> (v) Describe the action of the diode in forward and reverse bias modes 	
	NUCLEAR		 Semi conductor diode: Zener diode 	(vi) Sketch graphs of current – voltage relations; forward bias, reverse bias and breakdown.	
	PHYSICS			 (vii) The importance of the p – n junction (viii) Give the functions of a junction diode. (ix) State the applications of LEDS in daily life. (x) Explain the actions of the photodiode, LCD and Zener diodes 	
27	5.0				
	ATOMIC		- The bipolar transistor	 (i) Explain what is meant by a transistor; n - p - n and p-n-p types. 	
	AND	5.4	 Transistor characteristics The transistor as a switch in the Common – Emitter mode 	(ii) Describe the action of a bipolar n-p-n transistor.(iii) Explain transistor action	
	NUCLEAR	Electronic Devices	- The transistor as an LDR switch - The transistor as an alarm	(iv) State the functions of a transistor as an amplifier and as a switch.	

	PHYSICS		switch	(v) Explain the use of a bipolar transistor in switching circuits.	
28	5.0 ATOMIC AND NUCLEAR PHYSICS	5.4 Electronic Devices	 The Common- Emitter class a.c. amplifier The transistor as an amplifier: + the quiescent state + applying the input + voltage amplification + load lines - Integrated circuits - Logic Gates; OR, AND, NOT, NAND and NOR 	 (i) Calculate current gain (ii) Describe the: a) C- E amplifier b) load line c) thermal runaway d) coupling (iii) State in words and in truth table form, the action of logic gates. (iv) State the symbols of the various logic gates. 	
29	5.0	5.5	- Evidence for the existence of	(i) Describe and explain the results of the	
	ATOMIC	The Nucleus	atomic nuclei	alpha – particle scattering exp't. (ii) Describe a simple model for the nuclear atom	
	AND		- The nuclear atom	(iii) Distinguish between nucleon number	
	NUCLEAR		- Nuclear binding energy	and atomic number. (iv) Explain the existence of isotopes (v) Use the notation for atomic nuclides.	
	PHYSICS			(vi) Define nuclear binding energy and use it to explain the mass-energy equivalence	
	ENI	O OF SECOND TERM / THIRD TER	/ END OF FIFTH SEQUENCE PAF M BEGINS / FIFTH SEQUENC	RT ONE CE PART TWO CONTINUES	
30	5.0		- Natural and artificial radioactivity	(i) Distinguish between natural and artificial radioactivity	
	ATOMIC	5.6		(ii) Explain the spontaneous and random	
	AND	Radioactive	Properties of nuclear radiationRadioactivity as a random	nature of nuclear decay (iii) Describe nuclear reactions using nuclear equations.	
	NUCLEAR	Decay	process	(iv)List the properties of α , β and λ particles	
	PHYSICS		- Stable and unstable nuclei	(v) State the mass-energy equation $E = c^2 \Delta m$ and use it to solve problems (vi) Sketch the variation of binding energy	

				per nucleon with nucleon number (vii) Explain the relevance of binding energy per nucleon to nuclear fusion and fission. (viii) Define the terms <i>activity</i> and <i>decay</i> <i>constant</i> (ix) Solve problem using $A = \lambda N$ (x) Plot exponential decay curves and
				(x) For exponential decay call vestimated analyze the equation $N = N_o \ell^{-\lambda t}$ to solve problems. (xi) Define half – life (xii) Solve exercises using the relation: $\lambda t^{1/2} = \ln 2$
31	END OF FIFTH SEQ	UENCE HARMONIZE	ED EXAMINATIONS	
			SIXTH SEQUENCE BEGINS	
32				
33				
34				
35				
36				

ADVANCED LEVEL PHYSICS TEACHING SCHEMES UPPER SIXTH SCIENCE

WEE	K TOPIC	LESSON	CONTENTS	OBJECTIVES	REMARKS/ ACTIVITIES
I	FIRST TERM week	x 1 to week 15	FIRST TERM week 1 to w	veek 15 FIRST TERM week 1	to week 15
			FIRST SEQUENCE		
1	6.0 FIELDS	6.1 Gravitational Fields	 Newton's law of universal gravitation Gravitational field strength, g Qualitative description of the earth's gravitational field Inverse square law for fields of spherically symmetrical masses Variation of gravitational field inside and outside earth. Gravitational potential 	 (i) State the laws of gravitation (ii) Prove Kepler's laws (iii) Apply Kepler's laws to the movement of the moon and other planets (iv) Apply Newton's law of gravitation F = G M m/r³ r to solve problems involving orbiting bodies. (v) Define gravitational field strength (vi) Derive g from force of gravity for a uniform field (vii) Draw and interpret graphs showing the variation of g with distance from centre of mass (viii) Sketch graphs showing the variation of V with distance from centre of mass (ix) Apply potential energy to planetary and satellite motions (x) Define potential energy (xi) Derive the equation V = -G m/r 	
		6.2	 Measurement of charge Electrostatic phenomena and electric charge 	(i) State that electric charge is a fundamental property of matter	

2	6.0 FIELDS	Electric Fields	 Current as rate of flow of charge Coulomb's Law Electric fields Electric field strength and Gauss's law Electric Potential 	 (ii) Describe how the two types of charges can be obtained. (iii) Apply the qualitative laws of electrostatics. (iv) Use Coulomb's law in the form F = k Q1 Q2 / r² r and use it to solve problems (v) Define electric field strength (vi) Represent an electric field by field lines (vii) Apply E = V/d 	
3	6.0 FIELDS	6. 3 Capacitors	 Meaning of capacitance Measurement of capacitance Factors affecting the capacitance of a parallel plate capacitor Permittivity Capacitor networks 	 (i) Describe what a capacitor is (ii) State the use of capacitors in simple circuits (iii) Define capacitance and the farad (iv) Describe an exp't to determine the capacitance of a capacitor. (v) State and explain the factors that affect the capacitance of a capacitor (vi) Derive equations for series and parallel arrangements capacitors. (vii) Solve problems involving capacitors in series and in parallel (viii) Solve problems using the equation C=Q/V 	
4	6.0 FIELDS	6. 3 Capacitors 6.4 Magnetic fields	 Charging and discharging of capacitors; growth and decay curves The time constant Energy stored in a charged capacitor Magnets and magnetic materials Magnetization and hysteresis Magnetic flux density; the tesla Force on a current-carrying conductor in a uniform magnetic field 	 (ix) Calculate the energy stored in capacitor by calculating the area under a Q versus V graph (x) Analyze exponential growth / decay curves (xi) Use the equation Q = Q_o ℓ^{-t/RC} to determine the time constant τ (i) Explain the origin of the magnetic field (ii) Distinguish between magnetic, paramagnetic, diamagnetic and non magnetic materials (iii) Describe the processes of magnetization (iv) State that magnetic hysteresis results from the fact that magnetic dipoles are not exactly elastic (v) Define <i>magnetic flux density</i> and the tesla 	

			 Force between parallel current-carrying conductors; definition of the ampere and permeability μ₀ Magnetic effect of steady currents; Biot - Savart law 	 (vi) Solve problems using F = BIL sinθ and determine the direction of the force from Fleming's left hand rule (vii) Demonstrate that the force on a current-carrying conductor can be used to measure the flux density of a magnetic field using a current balance (viii) Sketch field patterns due to a long straight wire, flat circular coil and a long solenoid (ix) Determine the nature and direction of the forces between current-carrying conductors (x) Define the ampere and explain permeability (xi) State the Bio- Savart law for a short length of conductor. (xii) State that the Bio – Savart law can be used to derive expressions for the flux density of real conductors 	
	6.0				
		6.4	Force on a moving chargeMeasurement of charge–to-mass	(i) Predict the direction of the force on a charge moving in a magnetic field	
	FIELDS	Magnatia fielda	ratio; e/m	(ii) Apply the formula $F = B Q v \sin\theta$ to solve	
		Magnetic fields		problems involving a moving charge	
			- Couple on a rectangular coil - Magnetic flux density within a	(iii) Describe an exp't to determine the e/m of an electron	
5			long solenoid	(iv) Prove that $\frac{e}{m} = \frac{2V}{B^2 r^2}$	
			- Effects of iron core in solenoid	(v) Derive the expression for the torque on a	
			- Electromagnets	rectangular coil in a magnetic field $T = NIBA$	
			- Magnetic shielding, Lorentz	(vi) Apply the torque to simple dc motors and	
			force	generators (vii) Draw and describe the magnetic field within	
			- Earth's magnetic field	a long solenoid	
				(viii) State the different applications of	
				electromagnets (ix) Describe the Earth's magnetic field	
				(i) Define magnetic flux and the weber	
				(ii) Solve problems using $\Phi = BA \cos\theta$	
			- Magnetic flux and flux linkage - Electromagnetic induction	(iii) Distinguish between magnetic flux and magnetic flux linkage	
				падноно пил шкадо	

			- Laws of electromagnetic	(iv) Describe how the following can cause an	
			induction	emf to be induced in a circuit	
6	11.0	11.1		- changing magnetic flux	
				- relative movement of a magnet and a coil	
	ELECTRO-	Magnetic Flux	- Induced e.m.f. in a straight	(v) State that the direction of the induced emf	
			conductor	opposes the change causing it	
			- Mutual inductance	(vi) State the factors that affect the magnitude of	
	MAGNETIC		- Self inductance	the induced emf	
				(vii) Solve problems involving Faraday's and Len's laws of electromagnetic induction	
	INDUCTION			(viii) Name common applications of electro-	
	INDUCTION			magnetic induction	
				(ix) Explain what is mutual inductance	
				(x) Describe how mutual induction can be	
				demonstrated	
				(xi) Explain the self inductance and back emf	
		END OF FIRST	END OF FIRST SEQUENCE		
		SEQUENCE	EVALUATION	END OF FIRST SEQUENCE EVALUATION	
		EVALUATION	SECOND SEQUENCE BEGINS		
	11.0		- The transformer	(i) Describe the principle of operation of the	
		11.2	- The simple DC generator	transformer	
	ELECTRO-	11.4		(ii) Solve problems involving the efficiency of a	
			- The AC theory	transformer	
7		Alternating	- Root Mean Square values	(iii) Explain the scientific and economic	
	MAGNETIC	Currents	- Relationship between r.m.s.	advantages of using transformers to	
			values and peak values for	transport ac at high voltages	
			currents and voltages	(iv) Describe the action of a simple dc motor	
	INDUCTION		- Energy and power in ac circuits		
				(v) Explain the terms: <i>period</i> , <i>frequency</i> , <i>peak</i>	
			- Rectification and smoothing	<i>value</i> and <i>r.m.s. value</i> as applied to	
				alternating current or voltage	
				(vi) Establish that: $I = I_0 \sin 2\pi f t$ and	
				r.m.s. value = 0.71 peak value	
				(vii) Deduce that the mean power in a resistive load is half the maximum for a sinusoidal a.c.	
				(viii) Distinguish between r.m.s. and peak values	
				(ix) Solve problems using $V_{r m s} = \frac{v_{max}}{\sqrt{2}}$	

				 (x) Explain what is rectification (xi) Distinguish between half wave rectification and full wave rectification (xii) Explain the use of a single diode for half wave rectification of alternating current (xiii) Explain the use of a bridge rectifier for full wave rectification of alternating current (xiv) Analyze the role of a capacitor in smoothing
8	11.0 ELECTRO- MAGNETIC INDUCTION	11.3 Electrical Oscillations	 Current in an Inductive circuit Inductive reactance Current in a pure capacitor Capacitive reactance Current in an R- C - L series circuit Phase diagrams and impedance Electrical resonance in R- C - L series circuits 	(i) Establish the relationship between applied e.m.f. and inductance (ii) State that the induced current lags behind the applied p.d. in a purely inductive circuit. (iii) Calculate the inductive reactance from $X_L = 2\pi$ f L (iv) State that the applied current leads the applied p.d. in a purely capacitive circuit (v) Calculate capacitive reactance using $X_C = \frac{1}{2\pi f C}$ (vi) Explain that current does not flow through a capacitor but to and from the plates only. (vii) Establish a relationship between R, C and L (viii) Draw diagrams showing input and output singles as applied to the various circuits (ix) Explain the use of the circuits as high / low pass filters (x) Calculate impedance $Z = \sqrt{R^2 + (X_L - X_C)}$ (xi) Determine resonance point and its uses (xii) Calculate quality factor
9	12.0 QUANTUM PHYSICS	12.1 Photons and Energy Levels	 Conservation of energy for waves in free space Inverse square law Wave – particle duality 	 (i) Explain that the energy of a wave is conserved in vacuum but it gradually degrades when travelling through a medium (ii) Define intensity and use it to explain the inverse square law

	12.1 Photons and Energy Levels	 The photoelectric effect The Quantum Theory of Radiation Einstein's photoelectric equation Stopping Potential 	(iii) Explain the dual nature of light (iv) Give evidences to both the particle theory and wave theory of light (v) State that all physical entities can be described as waves or particles and that these aspects are linked by $E = hf$, $\lambda = \frac{h}{p}$ (vi) Explain what is meant by the photoelectric effect (vii) State the results of the photoelectric effect (viii) Explain how the classical theory fails to explain the photoelectric effect (ix) Explain the quantum theory of radiation (x) Explain the photoelectric effect in terms of photon energy and work function (xi) Use Einstein's photoelectric equation $E = \Phi + K.E$ to solve problems (xii) State the significance of the threshold frequency (xiii) Sketch and interpret graphs of how the kinetic energies of emitted electrons vary with frequency of the incident radiation (xiv) describe and interpret qualitatively the evidence provided by electron diffraction for wave nature of particles (xv) Use the relation for the de Broglie wavelength $\lambda = \frac{h}{p}$
10	12.1 Photons And Energy Levels	 Atomic structure Energy levels The electron volt Excitation and ionization energies Line spectra: emission and absorption 	 (i) State the results of Rutherford's alpha – particle scattering experiment (ii) Describe the Bohr model of the atom (iii) Explain the meaning of <i>energy level</i>, <i>stationary state</i>, <i>ground state</i> and <i>excited state</i> (iv) Distinguish between <i>ionization energy</i> and <i>excitation energy</i>, <i>ionization potential</i> and <i>excitation potential</i> (v) Calculate the energy involved in electron

		12.1 Photons And Energy Levels		 transitions from one energy level to another (vi) Explain the meaning / significance of the electron volt (eV) (vii) Explain that the wavelengths of the radiations emitted by the various transitions are different and consist of lines. (viii) Explain and distinguish between <i>line emission spectra and line absorption spectra</i>
11		12.2 Atomic Spectra	 Schrodinger model of the Hydrogen atom Heisenberg uncertainty principle: + position - momentum + time - energy 	
12	END OF SECOND SEC	QUENCE HARMONIZE	TEA	ST ACQUISITION OF KNOWLEDGE AND ADJUST ACHING METHODS / TECHNIQUES
10			THIRD SEQUENCE BEGINS	
13	OPTION 1: ENERGY RESOURCES AND ENVIRONMENTAL PHYSICS	Energy Resources	 Primary and Secondary energy Finite and renewable resources Patterns of energy consumption in Cameroon Energy Reserves and their sources: + Estimates of fossil fuels and uranium resources + Solar power + Energy of winds, waves and tides 	 (i) Distinguish between primary and secondary sources of energy (ii) List renewable and non- renewable sources of energy (iii) Define fossil fuels and give the use of fossil fuels, fossil materials and biofuels as stores of energy (iv) State and describe locations of <i>geothermal</i> energy, solar energy, tidal energy, wind energy, biomass, biofuel and wave energy in Cameroon (v) Distinguish between directly usable energy sources and indirect (convertible) energy sources (vi) Discuss the non- uniform distribution of worldwide energy sources (vii) Use the solar constant in simple calculations on kinetic energy of wind, potential energy of stored water

			(viii) Give a description of deep water waves	
14	Energy Conversion	 Hydroelectric power Efficiency of the power station Fission reactor as a boiler Alternative Sources of electric energy + solar cells and solar power stations, wind turbines, Fusion reactor 	 (viii) Give a description of deep water waves Describe the processes by which energy is converted from one form to another with reference to: (i) Compare the relative advantages and cost of using natural gas, gas oil and Heavy Fuel Oil (HFO) for electricity generation and in car consumption. (ii) Hydroelectric generation and transmission, with emphasis on mechanical energy involved. (iii) Solar energy and solar cells: designing of solar cells and solar panels, performing simple calculations. (iv) Nuclear energy (v) Geothermal energy (vi) Wind energy (vii)Biomass / biofuel : a) Showing daily and seasonal variations in demand b) Solving problems of storage of electrical energy 	
			 c) Distinguish between fission and fusion in terms of energy release d) Qualitative description of the fission reactor: chain reaction, moderator, coolant and control rods e) Calculate the efficiency of the energy conversion in terms of the energy converted w.r.t. to energy input 	
15		 Radiation hazard and its consequences to human health and the environment Geophysical hazard and its consequences to human and the 	 (i) Explain the radiation hazard between humans and their natural environment (ii) Describe the destruction of the ionosphere its consequences (iii) Appreciate the energy waste in the 	

		Climate Change	environment	destruction of the forest
		8		(iv) Appreciate and advise on detection and
			- Global warming	prevention of destruction caused by
			- Greenhouse effect: efforts to	seismic waves (tsunami and volcanoes)
			reduce greenhouse effect or	
			mitigation method	
			FERM / END OF THIRD SEQUEN	
		SECOND TERM	BEGINS / THIRD SEQUENCE	PART TWO CONTINUES
	OPTION 1:			
			- Effects of air navigation	(i) Discuss the movement of air over the
	ENERGY			earth's surface due to cosmic radiation
16	DECOUDCES AND	Space Weather	- Satellites and Power stations	(ii) Detection of air movement by satellite
16	RESOURCES AND		- Information on collection of	(iii) Describe methods of measuring humidity
	ENIVIDONIMENTAT		satellite data	(iv) State and discuss simple methods of
	ENVIRONMENTAL		- Ground armature means of	weather forecast
	PHYSICS			(v) Describe the variation and the
	PHISICS		tracking data from different	consequences of rainfall in Cameroon
	(Continued)		satellites	(vi) Explain the use of satellites in collecting
	(Continued)			weather parameters
			- Simple A.M. radio transmitter	(i) Draw block diagrams for a simple radio
	OPTION 2:		and Receiver	transmitter and receiver.
17			- Differences between FM and	(ii) Use tuning circuit to explain the principle
17		Radio Systems	AM transmissions	of a radio receiver.
	COMMUNICATION		- Sidebands and bandwidth	(iii) Describe super heterodyne system
			- Attenuation	(iv) Distinguish between AM and FM
				(v) Explain the term modulation and use it to
			- Tuning circuits	distinguish between FM and AM
			- Parallel-tuned LC circuits and	(vi) Give the relative advantages of AM and
			the dependence of f_r on LC	FM
			- Principles of modulation	(vii)Explain that a carrier wave amplitude
			<u>r</u>	modulated by a single audio frequency is
			- Different modes of transmission	equivalent to the carrier wave frequency
				together with two sideband frequencies
				(viii) Define the term bandwidth
				(ix) State the advantages of the transmission of
				data in digital form
				(x) Explain that the digital transmission of

				speech or music involves analogue- to – digital conversion (ADC) on transmission and digital – to- analogue conversion (DAC) on reception	
18				 (i) Discuss the relative advantages and disadvantages of channels of communication in terms of available bandwidth, noise, cross-linking, security, signal attenuation, repeaters and 	
		The Mobile Phone	 Structure and Functions of a Mobile Phone - 	regeneration, cost and convenience (ii) Describe the use of satellites in communication (iii) Analyze the phone as a transmitter and as a receiver.	
				 (iv) Explain the link between the base stations (via a cellular exchange) and the public switched telephone network (PSTN) in a mobile phone system. (v) Explain the need for an area to be divided 	
				 (v) Explain the need for an area to be divided into a number of cells in the satellite station, each cell served by a based station (vi) Explain the role of the base station and the cellular exchange during the making of a 	
		END OF THIRD		call from a mobile phone handset. (vii)Draw a simplified block diagram of a mobile phone handset, giving the function of each block	
		SEQUENCE	END OF THIRD	END OF THIRD	
		EVALUATION	SEQUENCE EVALUATION	SEQUENCE EVALUATION	
FOURTH SEQUENCE EVALUATION SEQUENCE EVALUATION					
19	REVISION	REVISION	REVISION	REVISION	
20	REVISION	REVISION	REVISION	REVISION	
21	REVISION	REVISION	REVISION	REVISION	
22	REVISION	REVISION	REVISION	REVISION	
23	REVISION	REVISION	REVISION	REVISION	
24		-	H SEQUENCE HARMONIZED EX		
25	REVISION	REVISION	REVISION	REVISION	

26	REVISION	REVISION	REVISION	REVISION			
27	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS			
28	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS			
	SECOND TERM HOLIDAYS						
29	REVISION	REVISION	REVISION	REVISION			
30	END OF FIFTH SEQUENCE						
31	REVISION	REVISION	REVISION	REVISION			
32	REVISION	REVISION	REVISION	REVISION			
33							
34							
35							
36							

	THIRD SEQUENCE BEGINS					
13	OPTION 3:		 Thermionic emission Action and use of circuit components 	(i) Explain the emission of electrons by a hot metal filament(ii) Explain that to cause a continuous flow of		
	ELECTRONICS	Electronics	- Colour code - Therevin law	 emitted electrons requires high positive potential and very low gas pressure (iii) Identify and list the components found in the electrical circuit (iv) Give the values of some components such 		
	ELECTRONICS		 CR and LR circuits Transformers Centre taped transformer in rectification 	 as resistors, capacitors and inductors found in such circuits (v) Explain how the values of resistors are chosen according to the colour code and why widely different values are needed in different types of circuits (vi) State and apply Therevin law (vii)Discuss the need to choose components with suitable power ratings (viii) Display an understanding of the charging and discharging a: - capacitor time constant - capacitor coupling (ix) Explain the effect of an inductor in a circuit (ix) Draw phasor diagrams (x) Calculate the reactance X and the impedance Z in an oscillatory system (xi) Identify a transformer in a circuit for 		
14	ELECCTRONICS	Heat and Light Sensors Relays and Reed switches	- Thermistor and LDR - Relay - Reed switch	rectification (i) Describe the action of heat and light dependent resistors and describe use as input sensors (ii) Describe and explain the use of reed / relays in switching circuits (iii) Explain the use of reed / relays in switching circuits		

		Binary Systems and OPAMP	- Bistable and astable				
15							
			TERM / END OF THIRD SEQUE				
		SECOND TERM BEGINS / THIRD SEQUENCE PART TWO CONTINUES					
16							
	OPTION 4						
17							
18							
		END OF THIRD SEQUENCE	END OF THIRD	END OF THIRD			
		EVALUATION	SEQUENCE EVALUATION	SEQUENCE EVALUATION			
	FOURTH SEQUENCE BEGINS						
19	REVISION	REVISION	REVISION	REVISION			
20	REVISION	REVISION	REVISION	REVISION			

21	REVISION	REVISION	REVISION	REVISION	
22	REVISION	REVISION	REVISION	REVISION	
23	REVISION	REVISION	REVISION	REVISION	
24	END OF FOURTH SEQUENCE HARMONIZED EXAMINATIONS				
25	REVISION	REVISION	REVISION	REVISION	
26	REVISION	REVISION	REVISION	REVISION	
27	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS	
28	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS	MOCK EXAMS	
	SECOND TERM HOLIDAYS				
29	REVISION	REVISION	REVISION	REVISION	
30			END OF FIFTH SEQUENCE		
31	REVISION	REVISION	REVISION	REVISION	
32	REVISION	REVISION	REVISION	REVISION	
33					
34					
35					
36					