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I (a) Solve the differential equation v ‘—’1 -\= x eosy, given thaty = Owhenx = n
‘ .
(b} Find the constants Aand B such that 4¢os 2y + Bsin 2uis o particular integral of the differential

d v v
equation — + == < 3y= Jgin 2y,
. ‘z‘. ~
Hence, obtain the general solution of the differential equation.

Find, also, the solution for which v =3 and fl-[' «dwhenx = 0.
14}

. '
2. {a) Express /(x)= (“"_ ) in partial fractions.
e |

'
|
Hence. using the substitution t = tan&or otherwise, prove (I\MI f(x)dx = - (z-2).
"

{b) Given that /, =I(In v) dv, show that 1, =2"¢" =nl,_, . Hence, evaluate /,

J. fa) When 3 " and higher powers are neglected,

|=x
: L]
(b) Find the Maclaurin series expansion of cosx’ as far as the term in v

ln( -!—:—m‘h - ) CTA L "4ev' Find the values of the real constants a, band ¢,
|

M)

Show that the general term, {/ , of this expansion can be written as U, = "") 2
Hence, show that the series is convergent for all real values of x.
4 (a)‘Thc point P in the Argand dingram represents the complex number 2, and Q represents

i
the complex number @, where =" —-l ;

Given that P lies on the circle with centre at the origin and radius 1 unit,

i) Prove that Q lies on the curve Jer = jor 4 i

(if) Sketch the locus represented by ]m’ =|m + il.
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he form a * bi, where 1
: our answer in t . 3
(b) Find the roots of the equation (= = 4) =8i ,gwmgwu"'n“A B. C representing these |
) z .
are n::l r:t::::rr: ‘:lldlcnk‘, on an Argand dingram. the po ooty

I ’
Find the area of triangle ABC. x=landx=e¢ is ;;(7 *‘,.)'

his curve through 21 radiang
ined \:; "z::‘;?%:c‘“mmid of this curve. ou
- giving your ANSwWer in terms ofn.‘.f

? -
betwee
S5 Show that the length of the curve B()' + 'n-")’ x

Find the area of the surface of revolution obta
x - axis, Using a theorem of Pappus, find the ¥ “:°3 sinhr=7,
6. (a) Find the real values of x for which Scoshx

loganthms enti
(b] Use the definition of cothxin terms of expon

: | x+1 ;
coth' x==In| — | x' >
2 x -1

al functions to prove that

f ¥ ?
A Function {is defined by f(x) = coth '(;‘ J. x'>4.

()  Show that f '(.\‘) = -—
xX° =4 | |
(i) Expand f(x)as a series in ascending powers of ‘ as far ns the term in :‘.. .

4 = ) : !
7. (a) Given the matrix A =(’ ]. find the value(s) of 4 for whnchlxl - AI' =0, where / is a unit

matrix
(b) Show that the transformation T, represented by the matrix
A 3
Wel2 0o -2| mapsthe whole space onto the plane x - 2y+2=(.
3y -2 -7

Find the image under this transformation of
» 2=
(i) theline x=-y= ——"

(i1.) the plane X = y ==
8. fa) Itis given that x s an element of a group G with identity element e and that x' = 1 .

Show that x’ = ¢.
(b) Consider the groups G, G,, G, , where

G, =([13.72.9}=,, ).
Gy =15 701, ).
G, = ((1.3.5,7),)

where X, means multiplication modulo n,
(i) Draw up group tables for(/,, G,, ¢,

(iv) Find which of the two groups are isomorphic and wri
‘rite dow ;

(v) Solve the equation 2 =xin each of the three i N anisomorphism between them.

9.  The lines L, and L; are given by g

Loir=3i+j+2k+A(i+2/-k)

L,:r=6i-j+k+pu(-2i+k)
The plane I'T contains the lines L, and L,. Fing

in} the position vector of the point of intersection. of Lyand La.
(b & veclor normal to the plane [

ic) o Cartesian equation of the plane [1:

i) the distance of the point (3, <1, 4) from the plane In:
-] y+2 2-2
e} the position vector of the point of intersection of the line Ll - "““‘ ==~ and the plane ]
| -




